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Abstract 

In this Letter we reanalyse the question of the origin of magnetic 
fields during the electroweak phase transition. We show that their 
formation is intimately connected to some semiclassical configurations 
of the gauge fields, such as electroweak Z-strings and W-condensates. 
We describe the formation of these semiclassical configurations during 
a first order phase transition and argue that they might be generated 
also in the case of a second order phase transition. We suggest that 
the instability of electroweak strings does not imply the disappereance 
of the embedded magnetic field. 
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I. INTRODUCTION 

An essential feature of phase transitions taking place in the early Universe is 

the breaking of translational invariance. In first order phase transitions transla- 

tional invariance is broken by the nucleation of bubbles, while in second order phase 

transitions by the formation of domains where the order parameter is correlated. 

Although some nontrivial remnant of the breaking of translational invariance may 

survive, analogously to the case of a ferromagnet below the Curie temperature, this 

is not generally the case in quantum field theories where a uniform value of the 

order parameter is energetically preferred. One remarkable exception is represented 

by topologically stable defects whose interiors do not feel the symmetry breaking 

and are formed by the Kibble mechanism [l]. Typical examples are local strings or 

domain walls. However, the topology of the vacuum manifold in the electroweak 

model does not allow the presence of topologically stable defects and one could 

wonder whether any trace of the structure present during the electroweak phase 

transition (EWPT) may remain imprinted and eventually be detectable today. It 

has been suggested by Vachaspati that the answer to this fundamental question 

might be positive [a]. H e suggested that strong magnetic fields may be produced 

during the electroweak phase transition as a consequence of nonvanishing spatial 

gradients of the classical value of the Higgs field. These gradients arise due to the 

finite correlation length of the twopoint correlation function just below the critical 

temperature. Once magnetic fields are generated they can be imprinted in the highly 

conductive medium and eventually survive. Recently, Vachaspati’s suggestion has 

been questioned [3]. The electric current due the dynamics of the Higgs field has 

been computed and showed to be vanishing during the EWPT. It was concluded that 

long range coherent magnetic fields are not generated by the classical rolling of the 

Higgs vacuum expectation value during the electroweak phase transition. In ref. [3], 

however, the contribution to the electric current coming from the dynamics of the 

gauge fields was not considered since it was assumed that the classical value of these 

fields was vanishing. We think that such an assumption is not motivated. Indeed, 

we will show that classical currents of the gauge fields, and hence electromagnetic 

fields, are generally produced during the EWPT. 

It is the purpose of this Letter to reanalyse and possibly clarify the question of 
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the origin of magnetic fields during the EWPT. We will argue that magnetic fields 

are indeed formed during the EWPT and that their origin may be interpreted to 

arise from the appearance of some semiclassical configurations of the gauge fields, 

such as electroweak Z-strings and W-condensates. The seeds of these configurations 

are the nonvanishing covariant derivatives of the Higgs field present during the phase 

transition. 

We will describe the formation of semiclassical gauge configurations during a first 

order EWPT by bubble collisions. This was already analysed by Copeland and Saffin 

in [4], but here we extend their findings with particular attention to the formation 

of the magnetic fields. In those cases in which electroweak strings are formed the 

equilibration of the Higgs phases proceed in some analogy to the U(1) abelian toy 

model studied in [5, 6] and magnetic fields may be formed as a consequence of such 

a process. 

By making use of some similarities of the electroweak model with the superfluid 

3He system, we will argue that electroweak strings are also expected to be formed if 

the EWPT is of the second order. Although electroweak strings are unstable, their 

decay does not imply the disappereance of the embedded magnetic field. This effect 

may increase the chances for the magnetic field to survive thermal fluctuations. 

II. THE IMPORTANCE OF GAUGE FIELD CONFIGURATIONS. 

For sake of clarity, we briefly repeat Vachaspati’s argument for the generation of 

magnetic fields during the EWPT [2]. Th e b asic object to analyse is the generalised 

electromagnetic field tensor given by 

where 

(1) 

(2) 

The definition (1) is inspired by the analogous t’Hooft definition given for the Georgi- 

Glashow model [7]. The remarkable feature is that it is explicitly gauge invariant 

and reduces to the standard definition in the presence of a uniform Higgs back- 

ground. Vachaspati observed that, even if the gauge fields vanish, the second term 
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in (1) may remain nonzero due to the nonvanishing gradient in the classical value 

of the Higgs field during the EWPT phase transition. Of course, one can always 

make a gauge transformation to render the gradients in the Higgs phase vanishing. 

However, this operation will induce nonvanishing gauge fields and expression (1) re- 

mains unchanged. Some ambiguity is already present at this level though. Indeed, 

as we transfer all the informations about the Higgs gradients into the gauge fields, 

it is not clear whether and eventually how the electromagnetic fields spring from 

the dynamics of the the gauge fields and, furthermore, if the dynamics of the Higgs 

field can be completely decoupled. Some further inspection of the gauge field dy- 

namics is certainly necessary to answer these crucial questions. Using the equations 

of motions of the field strength tensors Fiv and FTv, it is easy to show that 

+ gk,, [& ((D,@)+Dv@ - D,Q (D.m)+)]} , 
where D,@ = &@ + gcabcW:@. A useful exercise in order to clarify the physical 

nature of the several contributions to the electric current sustaining the magnetic 

fields is to imagine a region of space where the electroweak symmetry is broken 

everywhere. Because of gauge invariance, we can fix the unitary gauge for the Higgs 

field. This implies the reduction @ = -gas and amounts to transfer all the physical 

informations from the Higgs field phases into the gauge fields. In this gauge Eq. (3) 

reads 

PF;; = +ie [Wpt (D,Wp) - Wp (DyWp)+] 

- ie [Wpt (DpW,,) - Wp (DpWv)‘] 

- ieP (WjWv - W,WJ) 

+ 2 tan8w dp (Z,& lnp(X) - &a, lnp(X)) . (4) 

Here p indicates the modulus of the Higgs field. The first two terms on the right- 

hand side of this equation are the W convective terms and the third term is called the 

spin term being related to the W anomalous magnetic moment [8]. It is known that 

these terms can induce an anti-screening of the external magnetic field [8]. These 

terms are of course classically vanishing in the absence of a W-condensate. As we 

will show in more details below, the last term in (4) is also related to some possible 
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semiclassical configurations for the Z-field. Hence, as far as only the gauge sector 

of the electroweak theory is considered, expression (4) tells us that the currents 

sustaining classical electromagnetic fields have to reside in nontrivial semiclassical 

configurations of the gauge fields. 

A gauge invariant electric current was computed in [3] and showed to vanish. 

Clearly, such a result is compatible with (3,4) only in the case semiclassical config- 

urations of the gauge fields are absent. However, as we are going to show, this is 

generally not the case during the EWPT. 

III. BUBBLE COLLISIONS IN W(2). 

To warm up, let us first focus on the case in which the collisions involve two 

different bubbles carrying a different phase in the pure SU(2) case. In practice we 

are fixing 8~ = 0 in the Weinberg and Salam model. Here the situation is quite 

peculiar since no “electromagnetic” field is generated in spite of the presence of 

gradients in the Higgs field. The Higgs phase is assumed to be uniform across any 

single bubble. Following ref. [4], we may write the initial Higgs field configuration as 

a superposition of the two independent bubbles separated by a space distance b 

Eq. (5) certainly provides a good description of the real physical situation when the 

two domains are well separated and the mutual interaction may be neglected. We 

assume that it holds until the two bubbles collide and fix conventionally t = 0 when 

the collision takes place. The configuration (5) can be recasted in the general form 

@in(x) = -&exp (-i%$na,“) (O,p)T [4], where th e entire spatial dependence of the 

phase has been factorized into a new phase e”(x) (we will omit the tilde from now 

on). We assume that the gauge fields strength vanish before bubble collision. We 

also impose that the initial gauge fields Wi and their derivatives are zero at t = 0. 

This condition is of course gauge dependent and should be interpreted as a gauge 

choice. 

In vectorial form @ may be written as 4 = cos 19 $0 + sin0 fi x $0 + 

2 sin2 t (fi . $0) fi, where 4,’ - -(O,O, 1) . Note that we are now working in the 

adjoint representation for the Higgs field. It is straightforward to verify that in the 
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unitary gauge, 0 = 0, 4 reduces to $0. Since the versor h associated to the SU(2) 

gauge rotation does not depend on the space coordinates, we have the freedom to 

choose ti to be everywhere perpendicular to $0. In such a case 4 can be always 

obtained by rotating the unit vector by an angle 13 in the plane identified by ti and 

&. Formally, 6 = cos &$s + sin8 fi x &, which clearly describes a simple U(1) 

transformation. This already suggests that such particular choice of the relative ori- 

entation of fi and 4 the dynamics of the system is determined by an effective U(1) 

and not by the entire SU(2) gauge group. However, in order to verify this property 

more properly, we need to investigate the dynamics of the gauge fields. The latter 

is described by the equation of motion DfiF:v = g]p12 tabcDy$b$ which, at t = 0, 

reads 

PF,,, = -g1p12dve(x) (r-La - ?accp$) . (6) 

If we now impose the condition ?L I $0, it is straightforward to verify that C I 4. 

As a result, Eq. (6) reduces to 

PF,” = -glp12ave(x)na . (7) 

As anticipated, only the gauge field component along the direction fi, namely A, = 

na W;, does posses some initial dynamics in virtue of the presence of a nonvanishing 

gradient of the phase between the two domain. In other words, the only field strength 

possessing some dynamics is the one associated to the U(1) gauge field A,. The 

interaction of critical bubbles during a first order phase transition in a pure SU(2) 

theory may be effectively described by a simple U(1) gauge group. As noted in 

ref.[4], this case is of particular interest as it may give rise to the formation of W 

closed strings during bubble collisions. 

To better address the issue of the formation of the “electromagnetic” fields, we 

make use of t’Hooft definition of the electromagnetic field for a pure SU(2) gauge 

group F;F E -$a F;~ + ;@ D,@ ~&abc [7]. Since we are not considering the 

full electroweak gauge group structure, it is understood here that F;F is not the 

conventional electromagnetic field strength. After some algebra one can verify that 

the condition fi I 4 implies F;v identically vanish (more technical details will be 

given in [9]). H ence, in the absence of stable topological defects such as monopoles, 

no electromagnetic fields are produced during bubble collision even if the Higgs field 
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has a nonvanishing gradients. In other words, there are no currents to sustain the 

“electromagnetic” field. This shows as the presence of nonvanishing gradients in the 

Higgs field is not a sufficient condition for the generation of electromagnetic fields 

to take place. 

IV. BUBBLE COLLISIONS IN THE ELECTROWEAK THEORY 

We now generalise the previous discussion to the gauge group sum @ U( 1)~ of 

the electroweak theory. We have to introduce an extra generator, the hypercharge 

with the relative phase cp. The generalisation of the form (5) is straightforward. The 

gauge field equations at t = 0 are given by 

PF;~ = -$'(x) [-na&,e + $Y+] , 

8‘F; = -;p2(x) [-na$‘VvB + 2&V] . 

Due to the presence of an extra generator with respect to the pure SU(2) case, 

the reduction to a simple U(1) is no longer possible, but in some special cases. 

Different orientations of the versor fi with respect to $0 correspond to different 

physical situations, but in general both W- and Z-configurations are expected to 

form. Let us briefly address two extreme cases. If b is orthogonal to 40, this implies 

T? I 4. As a consequence, at t = 0 we have on the right-hand side of Eq. (8) the 

sum of two different terms that are perpendicular to each other. This means that 

at least two independent generators will be involved in the dynamics of the SU(2) 

gauge fields. Thus, in general we cannot reduce ourselves to an effective U( 1). Such 

a reduction would be possible only imposing the additional assumption &cp = 0. 

In such a case the hypercharge field does not evolve and dynamics of the system 

reduces to that of a pure SU(2). U n d er such conditions W-strings may be formed 

[4]. However, even if symmetry may be locally restored, we have shown that no 

electromagnetic fields are produced in this case. 

The case in which fi is parallel to ~$0 is much more interesting. In such a case 

4 = $0 . We obtain 

(9) 
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No initial evolution for the a = 1,2 components 

motion for the Z-field strength Ffv = cos O,Fiv 

, 

of F;” is present. The equation of 
- sin 8w FTv reads 

l/g” + d2 
PF; = 2 P”(X) (ad + ad-f). (10) 

This equation tells us that a gradient in the phases of the Higgs field gives rise 

to a nontrivial dynamics of the Z-field with an effective gauge coupling constant 

4 g2 + d2. Notice that this takes place even if aPp = 0. Thus, in agreement with 

[4], we have an effective reduction of the full SU(2) ~3 Uy(l) gauge structure to an 

abelian U(1) group, at least at initial time. The equilibration of the phase (8+(p) can 

be now treated in analogy to the U(1) t o model studied by Kibble and Vilenkin y 

[5], the role of the U(1) “electromagnetic” field being now played by the Z-field. 

Fixing an axial gauge for this field, with the z-axis chosen along the line joining 

the bubble centres, it is easy to show that the only nonvanishing components of 

FL are a longitudinal Z-electric field and a “ring-like” azimuthal Z-magnetic field. 

The related 2 field winds in planes normal to the ring internal axis. An important 

difference with respect to [5] is that one does not need to require the radial part 

of the Higgs field to be spatially uniform and constant in time. Indeed, numerical 

simulations clearly indicate that p has a nontrivial evolution during bubble collisions 

[6, 41. This is crucial not only for for the violation of the geodesic rules, but also for 

magnetic field generation. Let us take for simplicity a,0 = 0. The complete set of 

equations of motion we may write at finite, though small, times is 

where d, = aP + i +Z,, 7 is the vacuum expectation value of Q and X is the 

quartic coupling. Note that, in analogy with [5], a gauge invariant phase difference 

can be introduced by making use of the covariant derivative dP. Equations (11) are 

the Nielsen-Olesen equations of motion [lo, 111. Th eir solution describes a Z-vortex 

where p = 0 at its core. The reader should keep in mind that, as follows from 

our previous considerations, the geometry of the problem implies that the vortex is 

closed, forming a ring which axis coincide with the conjunction of bubble centres. 

What is crucial is that the formation of the magnetic field is always associated to 
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the appearance of a semiclassical Z-configuration. Indeed, cY‘F,“F does not vanish: 

even rotating away the phase cp 

8‘FiF = 2tanOwd@ (~J,Inp(x) - &&lnp(x)) (12) 

where now gp is Z-field in the new gauge. What is important is that 2p has a 

nontrivial dynamics. A ring-like magnetic field is formed along the internal axis of 

the vortex. It is interesting to observe that if closed Z-vortices break into finite 

segments, e.g. due to thermal fluctuations or subsequent bubble collisions, a mag- 

netic flux will emanate from the segment’s extremities which will behave as a pair 

of magnetic monopoles. This effect was already suggested in [12]. 

Magnetic fields were ignored in [4]. H owever, their role is crucial for the late 

evolution of the Z-vortices and the surviving of the U(1) reduction. In fact, as the 

magnetic field induce a back-reaction on the charged gauge fields, it is clear that 

the formation of the magnetic field in the core of the Z-string spoil the reduction 

of the SU(2) 8 U(l)y group t o an effective U(1). Together with the restoration 

of the electroweak symmetry in the core of the string, the magnetic field induces 

the decay of the 2 string into a W-condensate [13]. While electroweak symmetry 

restoration in the core of the string reduces mw, the magnetic field via its coupling 

to the anomalous magnetic moment of the W-field, causes, for eB > m&, the 

formation of a condensate of the W-fields. The presence of a W-condensate gives 

rise to an electric current which can sustain magnetic fields even after the 2 string 

has disappeared. This may have relevant consequences on the subsequent evolution 

of magnetic fields and we leave this investigation for future work [9]. 

It is important to notice that, in the most general case, fi is neither paral- 

lel nor perpendicular to $0 and we expect the formation of nontrivial W- and Z- 

configurations [ 91. I n such a case, one should retain the non-abelian nature of the 

electroweak theory and no reduction to a simple U(1) abelian group is expected to 

hold. 

We can now wonder what is the strength of the magnetic fields at the end of the 

EWPT. A partial answer to this question has been recently given in ref. [14] where 

the formation of ring-like magnetic fields in collisions of bubbles of broken phase in 

an abelian Higgs model were inspected. Under the assumption that magnetic fields 

are generated by a process that resembles the Kibble and Vilenkin [5] mechanism, it 
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was concluded that a magnetic field of the order of B N 2 x 102’ G with a coherence 

length of about lo2 GeV-i may be originated. Assuming turbulent enhancement of 

the field by inverse cascade, a root-mean-square value of the magnetic field B,,, N 

10b21 G on a comoving scale of 10 Mpc should be present today [14]. Although 

our previous considerations give some partial support to the scenario advocated in 

[14] we have to stress, however, that only in some restricted cases it is possible to 

reduce the dynamics of the system to the dynamics of a simple U(1) abelian group. 

Furthermore, once Z-vortices are formed the non-abelian nature of the electroweak 

theory shows due to the back-reaction of the magnetic field on the charged gauge 

bosons and it is not evident that the same numerical values obtained in [14] will be 

obtained in the case of the EWPT. This and other issues, e.g. how likely is it to 

form loops, what distribution should we expect and on what length scale, will be 

addressed in a separate publication [9]. 

V. MAGNETIC FIELDS FROM A SECOND ORDER TRANSITION. 

Let us now briefly address the formation of electromagnetic fields in the case 

case in which the EWPT is second order. As we argued, electromagnetic fields 

which are not merely thermal fluctuations can only be formed in the presence of 

semiclassical gauge field configurations. If the EWPT transition is of the second 

order, domains where the Higgs field is physically correlated appear near the critical 

temperature. Although these correlated domains have properties quite different 

from the bubbles formed during a first order transition, it is however plausible that 

gauge field configurations can be formed during a second order transition too. The 

formation of vortices is a common phenomenon in second order phase transitions. 

In particular, 3He to 3He-A and 3He to 3He-B second order phase transitions are 

known to give rise to the formation of topological and non-topological vortices via 

the Kibble mechanism. It is known that non-topological vortices in these systems 

share many common aspects with the electroweak strings [15]. The use of condensed 

matter physics experiments to investigate the non-perturbative aspects of particle 

physics and the formation of defects in the early-Universe is a very modern and active 

research line (see [16] f or a review). We adopt the same point of view to argue that 

electroweak strings are actually formed during the EWPT if this is second order. 
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In order to estimate the density of vortices, hence the mean magnetic field, we 

need to determine the typical size of domains. A very reasonable estimate of the 

typical minimum size of the domains in the vicinity of the critical temperature is 

given by the correlation length of the Higgs field computed at the temperature at 

which thermal equilibrium between the false-vacuum (which is now the symmetric 

phase 4 = 0) and the true-vacuum is no longer attained. In other words, we are 

interested in the temperature at which thermal fluctuations of the Higgs field inside 

a given domain of broken symmetry are no longer able to restore the symmetry. This 

is basically the Ginzburg criterion to determine what is generally called the Ginzburg 

temperature TG. A very rough estimate of TQ may be obtained just equating the 

thermal energy N T with the energy contained in a domain of size e of broken phase, 

Ee = X (d(T))4e3, where e is typically taken to be the correlation length t(T) and X 

is the quartic coupling in the Higgs potential. Here, however, we need a more precise 

determination of the Ginzburg temperature and, in this respect, we will follow the 

criterion suggested in ref. [17]. L e us imagine that a domain of broken symmetry t 

has been formed in the vicinity of the critical temperature and that the value of 

the Higgs field inside is of order of (4(T)). W e may model a thermal fluctuation 

which restores the symmetry inside the domain (i.e. the symmetry is unbroken, 

or NV)) = 0, in a sub-region of the domain) by a sub-critical bubble having the 

following configuration 

q&(r) = (4(T)) (1 - emrzieib) , (13) 

where &, is the correlation length in the symmetric phase. The rate per unit volume 

and unit time of nucleating such a sub-critical bubble of symmetric phase inside a 

domain of broken phase (with size equal to the correlation length in the broken 

phase) may be estimated to be 

rub = f eBsZblT, 
b 

(14 

where lb is the correlation length in the broken phase. S;b is the high temperature 

limit of the Euclidean action computed in correspondence of the configuration given 

in Eq. (13) and is a complicated function of the parameters present in the Higgs 

effective potential. A complete expression for Sgb may be found in ref. [18] and we 

do not give it here. We would like only to notice that, at fixed T, Szb/T increases as 
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X increases (and the phase transition becomes very weak first order or second order), 

rendering the thermal fluctuations less and less efficient as it might be conjectured 

by making use of the Ginzburg criterion outlined above. 

Thermal fluctuations of the unbroken phase inside a domain of broken phase 

freeze out and cease to be nucleated when the rate Pub becomes smaller than 

H4, H being the Hubble expansion rate of the Universe. This happens when 

Sgb/T 11 ln(M&/T,4) N 160. W e h ave numerically computed the temperature TG 

at which thermal fluctuations freeze out for different values of the parameter X (or 

equivalently for different values of the physical Higgs boson mass MH) and checked 

that nucleation of regions of unbroken phase inside a domain of broken phase stops 

at temperatures very close to the critical temperature, TG = T, within a few per- 

cents. The corresponding size of the domain of broken phase is determined by the 

correlation length in the broken phase at TG 

1 
- = V” ((I), 5%) 
e(T& 

(15) 

and is weakly dependent on MH, &(TG) N ll/T~ for MH = 100 GeV and &,(TG) N- 

10/T~ for MH = 200 GeV. 

Using this result and eq. (1)) we may estimate a magnetic field of order of 

B N 4e-l sin2 &&(TG) N 1O22 G, on a correlation length .&(TG). Notice that this 

value is about two orders of magnitude smaller than the one suggested by Vachaspati 

in his original paper [2], th e reason being that the correlation scale adopted there 

was about one order of magnitude larger the one obtained here by detailed balance 

arguments. The computation of the root-mean-square value of the magnetic field on 

scales larger that &( T ) G would require an estimate of the probability of formation of 

the Z-strings. This and other issues like the stability, the strength and the spatial 

distribution of the magnetic fields at the end of the EWPT are currently under 

investigation [9]. 

We conclude that it is plausible that magnetic fields are produced during the 

EWPT as a consequence of a nontrivial dynamics of the gauge fields. As classical 

magnetic fields are odd both under C and CP, it is noticeable that this process give 

rise to spontaneous breaking of both these symmetries. 
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